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Abstract: In this paper, we investigate the control problem of autonomous bay parking system. We choose a referenced parking
lot and define a suitable parking spot based on some measurements at various places. A kinetic model is set up for the convenience
of analysis and simulation. The pose of the car during the parking procedure can be determined by the initial pose, the backward
speed, and the steering angle of the wheel. Then, both a fuzzy speed controller and a fuzzy steering controller are designed for the bay
parking. Finally, simulation results show the effectiveness of our designed controllers.
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1 Introduction

As the number of automobiles is increasing, the streets
and the parking lots are becoming more crowded, which
makes the car parking more difficult, even for experienced
drivers. An increasing number of car accidents is caused
by collisions while parking cars. According to a report in
China, parking is the main source of vehicle accidents or
automobile-induced troubles[1].

Generally, there are three main aspects that make park-
ing difficult[1, 2]: First, as the drivers are seated inside while
parking cars, they may not see the space around the vehi-
cles well. The information obtained from the rear mirrors
is not perfect, due to the existence of blind zones. Sec-
ond, parking is a complicated procedure that depends on
the driving experience, skill, and drivers′ reaction. Third,
the parking area, the environmental differences between the
day-time and night-time, and the effect from other automo-
biles around also add to the complexity of the parking task.

Due to the above problems and reasons, researchers and
engineers have developed autonomous parking systems or
parking assist systems to alleviate the driving burden and
enhance the safety. Reversing radar is a kind of parking
assistant device that can inform the driver about surround-
ing obstacles in audio or visual forms. The radar system
helps the driver get some information from the rear side.
Hiramatsu[3] developed a new parking assist system based
on a rear view camera. The idea is to allow the driver to
follow the system by voice message rather than visual guide
information through the screen of an information LCD for
safety reasons. The guide algorithm minimizes the longitu-
dinal parking space under “two turns” parking maneuvers
and helps avoid collisions. However, this approach is just a
passive method (not an autonomous way), since the revers-
ing system is operated by the driver.

An autonomous parking system can park vehicles with-
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out the assistance of drivers. It consists of a parking spot
detection module, and an autonomous parking algorithm.
The system first explores an effective parking spot that is
larger than the minimal parking space. Meanwhile, the ori-
entation and position of the vehicle relative to the parking
space are obtained. Weis et al.[4] proposed a method for
camera vision-based parking spot detection that is charac-
terized by specific situations, and realized by image pro-
cessing on the incoming camera images. Vision-based ap-
proaches were studied in [5–9]. Ultrasonic sensors were also
employed to detect parking lots, see [10–12].

The autonomous parking algorithm has attracted atten-
tion in the past decades. Early in 1957, Dubins[13] in-
vestigated the path curve from an initial point to an end
point. However, the movements in [13] are either forward
or backward, i.e., mixed motion is not permitted. Reeds
and Shep[14] enriched the theory in [13], where an optimal
algorithm was proposed to calculate the path for a car that
moves both forward and backward. When an advanced in-
telligent control method was developed, it was usually ap-
plied to the parking problem to show the effectiveness due
to the nonlinearity in the motion. Nguyen and Widrow[15]

utilized neural network theory to solve the parking problem.
Kong and Kosko[16] compared the neural network method
and fuzzy-logic-based method for the same problem. Fuzzy
logic obtained a better control precision in [16]. The objec-
tive in [13–16] is to control a vehicle from one position to
another position. However, the constraints of the parking
lot are not considered.

Gómez-Bravo et al.[17] dealt with the problem of parallel
and diagonal parking of wheeled vehicles by using fuzzy
logic, based on the analysis of collision avoidance. By em-
ploying genetic algorithm′s learning ability, parameters for
the developed fuzzy logic controllers were determined effec-
tively in [10]. A time-varying fuzzy sliding mode controller
(TFSC) was developed for repeated scheduling parameters
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and tracking local paths for parallel parking in [18]. An
enhanced fuzzy logic controller was designed in [11]. For
an autonomous parking system, the method of evolution-
ary functional testing was used to derive a proposed area
criterion that results in a faster convergence of the optimiza-
tion in [19]. The case of parking of articulated vehicles was
addressed in [20, 21]. However, the research subjects were
wheeled robots or car-like vehicles. This is essentially dif-
ferent when the developed algorithms are directly adopted
into an automobile, due to the compliance and characteris-
tics of the mechanical steering system.

Autonomous parking systems have been regarded as the
next gadget in automobile industry. They have two work-
ing patterns: general parallel parking and bay parking[1, 2].
In this paper, we focus on developing a maneuvering algo-
rithm for bay parking of Jetta by properly tuning a fuzzy
controller. The design of fuzzy logic controller mainly de-
pends on experimental data. In order to obtain better data,
a data collection experiment, in which the automobile is
driven by an experienced driver, is carried out. The dis-
tance from the car to the origin of the coordinate and the
yaw rate are collected, when the automobile is at different
initial positions and orientation angles. By using a novel
technique, the relationship between X coordinate, Y coor-
dinate, orientation angle, and time is established. Since the
backward speed and steering angle vary during the park-
ing process, two fuzzy logic controllers are designed. One
fuzzy speed controller is first designed by experience. The
other controller is for steering control, and the controller
is designed via an adaptive network-based fuzzy inference
system (ANFIS). The processed data is used to build the
ANFIS for the bay parking in anfisedit, which is a Toolbox
of Matlab. Finally, the simulation results show the effec-
tiveness of the proposed two-stage fuzzy controller for the
bay parking pattern.

2 Bay parking system and preliminar-
ies

2.1 Overall process

As shown in Fig. 1, there are four main steps in the bay
parking pattern. First, the car is driven close to the parking
spot. Then, the system is turned on, and the system detects
a suitable parking space. When the parking lot is detected,
that is, the lot is larger than a minimal effective lot, and the
coordinate is established, the car stops in a recommended
area (details on the recommended area can be seen in the

work in [1]). Finally, the car is moved to the detected lot by
using the designed two-stage fuzzy logic speed and steering
controller. In this paper, we focus on studying the con-
trol algorithm and designing the controller. Note that the
control algorithm is based on the lot detection. Hence, we
assume that the lot is detected, and the coordinate system
is established.

Fig. 1 The overall process of bay parking pattern

2.2 Dimension parameters

In this paper, we investigate the bay parking algorithm
for a Jetta car, which is simplified as a rectangle. The main
car dimension parameters of our interest are shown in Fig. 2.
The values for the parameters are listed in Table 1.

Fig. 2 The dimension parameters

Table 1 Values for the dimension parameters

Dimension parameter Value (mm)

Length (Ll) 4 428

Width (Lb) 1 660

Wheel base (La) 2 471

Front overhang (Lfa2h) 825

Rear overhang (Lra2t) 1 070

Front tread (Lfw) 1 429

Rear tread (Lrw) 1 422

Distance between two king pins (Lpp) 1 329

Distance between the rear wheel to the right side (Lrr2r) 119
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The angle θ0, as shown in Fig. 2, can be computed as
follows:

θ0 =90◦ + arctan

(
2× Lra2t

Lb

)
=

90◦ + arctan

(
2× 1 070

1 660

)
= 143◦.

(1)

2.3 Referenced and suitable parking lot

Generally, different automobiles do not have identical
sizes. Similarly, parking lots in different places are not the
same either. For the self-adaptation of the control algo-
rithm, it is natural to find the referenced parking lot by
considering the dimensions of the car and the sizes of the
lots. Any lot, larger than the referenced parking lot, is
called a suitable parking lot. Now, we have two statements:

1) If a car can be parked automatically into a referenced
parking lot, with the same initial pose and initial position,
it can also be parked into a suitable parking lot successfully.

2) For a smaller referenced parking lot, it is more difficult
to design the control algorithm. However, if our algorithm
can park the car into a smaller space, then it can park the
car into a larger one too.

As shown in Table 2, most of the lots′ lengths are above
5 000mm, and the widths are more than 2 300 mm. Due
to the above fact, we choose the referenced parking lot as
4 871mm× 2 260mm, as shown in Fig. 3. The length of the
parking lot is chosen as 1.1 times of LI . The definition for
a suitable parking is that the length of the parking lot is no
less than 4 871 mm, and the width is no less than 2 260mm.

Table 2 Dimensions of parking lots in various places

Places Length (mm) Width (mm)

A (College) 4 920 2 322

B (Campus of Jilin University) 5 922 2 530

C (Campus of Jilin University) 5 903 3 235

D (Bank) 5 450 2 721

E (Restaurant) 5 268 2 415

F (Station) 5 000 2 506

Fig. 3 The referenced parking lot

2.4 Criteria for a successful parking

When we assess the performance of the control algorithm,
we consider the following facts:

1) The automobile should not collide with other cars in
the neighboring spots.

2) Finally, the automobile should be within the parking
lot. The shortest distance from the car to the boundary of
the lot should not exceed the limit of the sensor.

To satisfy the above requirements, we propose the follow-
ing criteria for successful bay parking:

1) During the parking process, the projection of the car
on the ground cannot touch the left, rear, and right bound-
aries.

2) In the final pose, the car should be within the lot.
Moreover, each point in the projection of the car on the
ground must be 100 mm away from the boundary of the
lot. Generally, the sensing limit of an ultrasonic sensor is
not greater than 100 mm.

2.5 Kinetic model for the system

During the process of parking, the speed of the car is
very low. Thus, the dynamics of the tires can be neglected.

Suppose the parking lot is detected and the target park-
ing lot is suitable. Set up a coordinate system, as shown
in Fig. 4. In the system, (Xf , Yf ) is the coordinate of the
center point of the front axis, (Xr, Yr) denote the coordi-
nate at the center point of the rear axis, θ represents the
orientation angle, φ is the steering angle at the center point
of the front axis, and Vf is the speed at the center point of
the front axis. Since the speed is low, and there is no slide
at the rear shaft, the speed at (Xr, Yr) along the rear shaft
is zero, that is,

Ẋrsin(θ)− Ẏrcos(θ) = 0. (2)

Fig. 4 Target parking lot and coordinate system

In terms of geometry, the relationship between (Xf , Yf )
and (Xr, Yr) is

{
Xr = Xf − La cos(θ)

Yr = Yf − La sin(θ).
(3)

Taking the derivative of Xr and Yr, we obtain

{
Ẋr = Ẋf + θ̇Lasin(θ)

Ẏr = Ẏf − θ̇Lacos(θ).
(4)

The relationship between (Xd1, Yd1) and (Xr, Yr) can be
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expressed as





Xd1 = Xr − Lr2lbcos(180◦ − θ0 − θ) =

Xr + Lr2lbcos(θ0 + θ)

Yd1 = Yf + Lr2lbcos(180◦ − θ0 − θ) =

Yr + Lr2lbsin(θ0 + θ).

(5)

The derivative of (5) is

{
Ẋd1 = Ẋr − θ̇Lr2lbsin(θ0 + θ)

Ẏd1 = Ẏr + θ̇Lr2lbcos(θ0 + θ).
(6)

Since the angle from Vf to the negative direction of X
axis is θ − φ, we have

{
Ẋf = −Vfcos(θ − φ)

Ẏf = −Vf sin(θ − φ).
(7)

Substituting (4) into (2), we obtain

Ẋf sin(θ)− Ẏfcos(θ) + θ̇La = 0. (8)

It follows from (7) and (8) that

θ̇ = Vf
sin(φ)

La
. (9)

By substituting (8) and (9) into (4), we get

{
Ẋr = −Vfcos(θ)cos(φ)

Ẏr = −Vf sin(θ)cos(φ).
(10)

Taking the integral for (10) along the time t, we obtain





Xr = −
∫ t

0

Vfcos(θ)cos(φ)dt

Yr = −
∫ t

0

Vf sin(θ)cos(φ)dt.

(11)

At each time instance, the coordinate of (Xd1, Yd1) is





Xd1 = −
∫ t

0

Vfcos(θ)cos(φ)dt + Lr2lbcos(θ0 + θ)

Yd1 = −
∫ t

0

Vf sin(θ)cos(φ)dt + Lr2lbsin(θ0 + θ).

(12)

It is noted that, in the above analysis, we have a vari-
able φ that is an equivalent steering angle at the center
point of the front shaft. However, this angle cannot be
measured. According to Ackerman steering[22] and our ex-
periment (three angular transducers: one for the left tire,
one for the right tire, and the other one for the steering
wheel), we derive a simple equation:

λ = 16.6φ (13)

where λ is the steering angle of the wheel. If we have the
coordinate of (Xd1, Yd1) and the orientation angle θ, we can
modify the pose and the position of the car. Using the re-
lationship between the steering angles of the wheel and φ,
we can control the steering of the car. Hence, (12), (13),
and (9) can be used to represent the kinetic model during
the parking process.

3 Controller design

In Section 2, we established the kinetic model. It was
shown that the position and the pose of the car can be de-
termined by the velocity Vf and the steering angle λ. In
this section, we will design two fuzzy logic controllers.

3.1 Fuzzy logic speed controller

Our control strategy for the backward speed is 1) at
the beginning, gradually increase the speed from 0 km/h
to 3 km/h, 2) keep the speed at 3 km/h, and 3) reduce the
speed until 0 km/h when the car is successfully parked at
the desired spot. This is a typical fuzzy process. There are
two inputs for the fuzzy speed controller: One is Yd1, and
the other one is Lu, which is the mileage at (Xr, Yr) from
the initial time to the current time. The diagram of the
controller is shown in Fig. 5 with 5 IF-THEN rules.

Fig. 5 Diagram of the speed fuzzy controller

The membership functions for Lu, Yd1, and Vf are illus-
trated in Figs. 6–8, respectively. The fuzzy rules for the bay
parking are chosen as

1) IF Yd1 is S, THEN Vf is S;
2) IF Yd1 is M, THEN Yf is M;
3) IF Yd1 is B AND Lu is not S, THEN Vf is B;
4) IF Lu is S AND Yd1 is B, THEN Vf is S;
5) IF Lu is M, THEN Vf is M.

Fig. 6 Membership function for Lu

Fig. 7 Membership function for Yd1
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Fig. 8 Membership function for Vf

Here, S, M, and B represent small, medium, and big, re-
spectively. By using the T-S inference model, we obtain the
relationship between the inputs and the output, as shown
in Fig. 9.

Fig. 9 Relationship between the inputs and the output

Remark 1. From our experiment, the speed of 3 km/h is
easy to maintain and control. Moreover, it is at low speed,
under which the vehicle dynamics can be neglected. The
main idea for the fuzzy speed control is to ensure that the
speed is small when the vehicle is close to origin (Yd1), and
speed can be medium or large when the distance is small
(In this case, the vehicle is at the beginning of the backing
up).

3.2 Fuzzy steering controller

There are two inputs for the fuzzy steering controller: θ
and Xd1. The output is the steering angle of the wheel.
Fig. 10 shows the diagram of the steering fuzzy controller.

However, θ and Xd1 cannot be measured directly. In our
work, we propose an algorithm to derive θ, Xd1, and Yd1 in
terms of the steering angle of the wheel λ, the distance of
the center point of the front shaft S, and the yaw velocity
Vθ. It is worth pointing out that λ, S, and Vθ are measured
from the initial point to the stop point. The algorithm is
given as follows:

Fig. 10 Diagram of the steering fuzzy controller

Algorithm 1.
Step 1. Smooth the data of S, and get the function between

S and the time.
Step 2. Take the derivative of the smoothed S, and obtain

the absolute velocity. Smooth the absolute velocity, and get the
function between the absolute velocity and the time.

Step 3. Smooth the yaw velocity Vθ.
Step 4. Integrate the smoothed Vθ with respect to the time.

Then, we get the variation of the orientation angle. The orien-
tation angle during the parking is derived as

θ = θ1 + |θ2| (14)

where θ1 is the initial orientation angle, and θ2 is the change of
the orientation angle during the parking.

Step 5. Smooth the steering angle of the wheel.
Step 6. The coordinate change of the center point of the rear

shaft is obtained by





∆Xr =
∑

Vfcos(θ)cos(φ)∆t

∆Yr =
∑

Vf sin(θ)cos(φ)∆t.
(15)

Step 7. The coordinate of the point D during the parking is
derived as

{
Xd1 = max(∆Xr)− (∆Xr + Lr2lbcos(θ + θ0)) + 170

Yd1 = max(∆Yr)− (∆Yr + Lr2lbsin(θ + θ0)) + 168.
(16)

When we obtain extensive dataset, we employ the AN-
FIS Toolbox of Matlab to generate the membership func-
tions for Xd1 and the orientation angle θ. The generated
membership functions are shown in Figs. 11–12.

Fig. 11 Generated membership function for Xd1

Fig. 12 Generated membership function for the orientation an-

gle

4 Simulations

In this section, we assume that the car has different ini-
tial conditions including the positions and the poses. We set
up the kinetic model that is built in Section 2 in Simulink.
Meanwhile, the fuzzy logic controllers are implemented in
Simulink model too. The trajectories of the car for various
initial conditions appear in Figs. 13–15, which show that
the car is parked successfully.
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Fig. 13 Trajectory when the initial orientation angle is 5◦

Fig. 14 Trajectory when the initial orientation angle is 0◦

Fig. 15 Trajectory when the initial orientation angle is −5◦

It is necessary to point out that if the orientation angle is
larger, and the initial position in the X-direction is closer to
the detected lot, the parking problem is more challenging.
As the linear matrix inequalities are playing an important
role in systems and control[23−33], in the future, we will em-
ploy the techniques of linear matrix inequalities and preview
control to solve the bay-parking problem.

5 Conclusions

We presented the application of fuzzy control for au-
tonomous bay parking of automobiles. We investigated the
available parking space dimensions in Changchun, PRC,
and chose a referenced parking lot. A kinetic model was
set up for the case, when the backward or forward speed is
low, and there is no slide in the rear shaft. By assuming

that the parking lot is detected, two fuzzy controllers were
designed. One is used to control the speed and the other
one is for steering control. The effectiveness under different
initial poses and positions is illustrated in the simulation.
Our further research is to implement the control logic into a
microcontroller and design an actuator so that the control
algorithm can be tested in a real automobile.
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